Diploma Programme Course Outline		
Name of the DP subject	Chemistry	
Level	Higher 🗆	Standard 🗆
	YEAR 1	
UNIT	TOPIC/CONCEPT	ASSESSMENT COMPONENTS
STRUCTURE ONE (1) Models of the particulate nature of matter Structure 1.1—Introduction to the particulate nature of matter	 Structure 1.1.1 Distinguish between the properties of elements, compounds and mixtures. Structure 1.1.2 Distinguish the different states of matter. Use state symbols (s,l, g and aq) in chemical equations. Structure 1.1.3 Interpret observable changes in physical properties and temperature during changes of state. Convert between values in the Celsius and Kelvin scales. 	 Skills in the study of chemistry <u>Tools</u> Tool 1: Experimental techniques Tool 2: Technology Tool 3: Mathematics Inquiry Process Inquiry 1: Exploring and designing Inquiry 2: Collecting and processing data Inquiry 3: Concluding and evaluating
	Practical Scheme of Work (PSOW) Separation techniques/purification methods : Solvation, filtration, recrystallization,	 Formative Assessment (any of the following): Observation of practical skills and ability to follow steps and show working Questioning

	evaporation, distillation and paper chromatography	 Discussion of the methodology of the calculations and what working is necessary: class, small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper questions Peer and self- assessment Students will be expected to check their own work at times, marking themselves and making corrections. At other times, they will share their answers and working and give and receive feedback from their peers Summative assessment Multiple choice questions Free response/structure
		 Free response/structure questions
Structure 1.2—The nuclear atom	 Structure 1.2.1 Use the nuclear symbol ^A_ZX to deduce the number of protons, neutrons and electrons in atoms and ions. Structure 1.2.2 Perform calculations involving non-integer relative atomic masses and abundance of isotopes from given data. 	Skills in the study of chemistry <u>Tools</u> • Tool 1: Experimental techniques • Tool 2: Technology • Tool 3: Mathematics Inquiry Process • Inquiry 1: Exploring and
	Additional higher level:	designing

Structure 1.2.3 • Interpret mass spectra in terms of identity and relative abundance of isotopes.	 Inquiry 2: Collecting and processing data Inquiry 3: Concluding and evaluating Formative Assessment (any of the following): Observation of practical skills and ability to follow steps and show working Questioning Discussion of the methodology of the calculations and what working is necessary: class, small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper questions Peer and self- assessment Students will be expected to check their own work at times, marking themselves and making corrections. At other times, they will share their answers and working and give and receive feedback from their peers Summative assessment
	 Multiple choice questions Free response/structure questions

Structure 1.3—Electron	Structure 1.3.1	Skills in the study of chemistry
configurations	 Qualitatively describe the relationship between colour, wavelength, frequency and energy across the electromagnetic spectrum. Distinguish between a continuous and a line spectrum. 	Tools • Tool 1: Experimental techniques • Tool 2: Technology • Tool 3: Mathematics
	inte spectrum.	Inquiry 1: Exploring and
	 Structure 1.3.2 Describe the emission spectrum of the hydrogen atom, including the relationships between the lines and energy transitions to the first, second and third energy levels. 	 designing Inquiry 2: Collecting and processing data Inquiry 3: Concluding and evaluating Formative Assessment (any of the
		following):
	Inquiry 2 In the study of emission spectra from gaseous elements and of light, what qualitative and quantitative data can be collected from instruments such as gas discharge tubes and prisms?	 Observation of practical skills and ability to follow steps and show working Questioning Discussion of the methodology of the calculations and what working is necessary: class,
	 Structure 1.3.3 Deduce the maximum number of electrons that can occupy each energy level. 	 small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper
	Structure 1.3.4	questions
	 Recognize the shape and orientation of an s atomic orbital and the three p atomic orbitals. 	 Peer and self- assessment Students will be expected to check their own work at times,

	 Structure 1.3.5 Apply the Aufbau principle, Hund's rule and the Pauli Exclusion Principle to deduce electron configurations for atoms and ions up to Z=36. Additional higher level: Structure 1.3.6 Explain the trends and discontinuities in first ionization energy (IE) across a period and down a group. Calculate the value of the first IE from spectral data that gives the wavelength or frequency of the convergence limit. Structure 1.3.7 Deduce the group of an element from its successive ionization data. 	 marking themselves and making corrections. At other times, they will share their answers and working and give and receive feedback from their peers Summative assessment Multiple choice questions Free response/structure questions
Structure 1.4—Counting particles by mass: The mole	 Structure 1.4.1 Convert the amount of substance, n, to the number of specified elementary entities. Structure 1.4.2 Determine relative formula masses (M_r) from relative atomic masses (A_r). Structure 1.4.3 Solve problems involving the relationships between the number of 	Skills in the study of chemistry <u>Tools</u> • Tool 1: Experimental techniques • Tool 2: Technology • Tool 3: Mathematics Inquiry Process • Inquiry 1: Exploring and designing • Inquiry 2: Collecting and processing data

• • Struc	particles, the amount of substance in moles and the mass in grams. ture 1.4.4 Interconvert the percentage composition by mass and the empirical formula. Determine the molecular formula of a compound from its empirical formula and molar mass. ture 1.4.5 Solve problems involving the molar concentration, amount of solute and volume of solution. ture 1.4.6 Solve problems involving the mole ratio of reactants and/or products and the volume of gases.	 Inquiry 3: Concluding and evaluating Formative Assessment (any of the following): Observation of practical skills and ability to follow steps and show working Questioning Discussion of the methodology of the calculations and what working is necessary: class, small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper
	ry 2 can a calibration curve be used to mine the concentration of a solution?	 questions Peer and self- assessment Students will be expected to check their own work at times, marking themselves and making corrections. At other times, they will share their answers and working and give and receive feedback from their peers Summative assessment Multiple choice questions Free response/structure questions

Structure 1.5—Ideal gases	Structure 1.5.1• Recognize the key assumptions in the ideal gas model.Structure 1.5.2• Explain the limitations of the ideal gas model.Structure 1.5.3• Investigate the relationship between temperature, pressure and volume for a fixed mass of an ideal gas and analyze graphs relating these variables.Structure 1.5.4• Solve problems relating to the ideal gas equation.Inquiry 2 How can the ideal gas law be used to calculate	Skills in the study of chemistry Tools • Tool 1: Experimental techniques • Tool 2: Technology • Tool 3: Mathematics Inquiry Process • Inquiry 1: Exploring and designing • Inquiry 2: Collecting and processing data • Inquiry 3: Concluding and evaluating Formative Assessment (any of the following): • Observation of practical skills and ability to follow steps and
	data? PSOW Obtaining and using experimental values to calculate the molar mass of a gas from the ideal gas equation	 Questioning Discussion of the methodology of the calculations and what working is necessary: class, small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper questions Peer and self- assessment

		 Students will be expected to check their own work at times, marking themselves and making corrections. At other times, they will share their answers and working and give and receive feedback from their peers Summative assessment Multiple choice questions Free response/structure questions
UNIT	TOPIC/CONCEPT	
STRUCTURE 2- Models of bonding and structure Structure 2.1—The ionic model	Structure 2.1.1 • Predict the charge of an ion from the electron configuration of the atom. Structure 2.1.2 • Deduce the formula and name of an ionic compound from its component ions, including polyatomic ions. • Interconvert names and formulas of binary ionic compounds. Structure 2.1.3 • Explain the physical properties of ionic compounds to include volatility, electrical conductivity and solubility.	Skills in the study of chemistry <u>Tools</u> • Tool 1: Experimental techniques • Tool 2: Technology • Tool 3: Mathematics Inquiry Process • Inquiry 1: Exploring and designing • Inquiry 2: Collecting and processing data • Inquiry 3: Concluding and evaluating Formative Assessment (any of the following):

Inquiry 2—What experimental data	Observation of practical skills
demonstrate the physical properties of ionic	and ability to follow steps and
compounds?	show working
PSOW Investigate compounds based on their bond type.	 Questioning Discussion of the methodology of the calculations and what working is necessary: class, small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper
	questions
	Peer and self- assessment
	• Students will be expected to check their own work at times,
	marking themselves and making
	corrections. At other times, they will share their answers and working and give and receive
	feedback from their peers
	Summative assessment
	Multiple choice questions
	Free response/structure questions

number of bonds, bond length and bond strength.Inquiry ProcessStructure 2.2.3Identify coordination bonds in compounds.Inquiry 2: Collecting processing dataIdentify coordination bonds in compounds.Inquiry 2: Collecting processing dataStructure 2.2.4Inquiry 3: Concluding evaluatingPredict the electron domain geometry and the molecular geometry for species with up to four electron domains.Inquiry 3: Concluding evaluatingStructure 2.2.5Observation of pract and from electronegativity values.Observation of pract and ability to follow is show workingStructure 2.2.6Observation of the me oplarity and molecular geometry.OuestioningStructure 2.2.7Structure 2.2.7Observation of the me of the calculations ar working is necessary	Structure 2.2—The covalent model	 Structure 2.2.1 Deduce the Lewis formula of molecules and ions for up to four electron pairs on each atom. Structure 2.2.2 Explain the relationship between the 	Skills in the study of chemistryTools• Tool 1: Experimental techniques• Tool 2: Technology• Tool 3: Mathematics
 carbon's allotropes: diamond, graphite, fullerenes and graphene. Think, pair, share Quiz 		 number of bonds, bond length and bond strength. Structure 2.2.3 Identify coordination bonds in compounds. Structure 2.2.4 Predict the electron domain geometry and the molecular geometry for species with up to four electron domains. Structure 2.2.5 Deduce the polar nature of a covalent bond from electronegativity values. Structure 2.2.6 Deduce the net dipole moment of a molecule or ion by considering bond polarity and molecular geometry. Structure 2.2.7 Describe the structures and explain the properties of silicon, silicon dioxide and carbon's allotropes: diamond, graphite, fullerenes and graphene. Structure 2.2.8 Deduce the types of intermolecular force 	 Inquiry 1: Exploring and designing Inquiry 2: Collecting and processing data Inquiry 3: Concluding and evaluating Formative Assessment (any of the following): Observation of practical skills and ability to follow steps and show working Questioning Discussion of the methodology of the calculations and what working is necessary: class, small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper

 Structure 2.2.9 Explain the physical properties of covalent substances to include volatility, electrical conductivity and solubility in terms of their structure. Structure 2.2.10 Explain, calculate and interpret the retardation factor values, <i>R</i>F. 	 Students will be expected to check their own work at times, marking themselves and making corrections. At other times, they will share their answers and working and give and receive feedback from their peers Summative assessment
 Additional higher level: Structure 2.2.11 Deduce resonance structures of molecules and ions. Structure 2.2.12 Discuss the structure of benzene from physical and chemical evidence. Structure 2.2.13 Visually represent Lewis formulas for species with five and six electron domains around the central atom. Deduce the electron domain geometry and the molecular geometry for these species using the VSEPR model. Structure 2.2.14 Apply formal charge to determine a preferred Lewis formulas for a species. Structure 2.2.15 Deduce the presence of sigma bonds and pi bonds in molecules and ions. 	 Multiple choice questions Free response/structure questions

	 Analyze the hybridization and bond formation in molecules and ions. Identify the relationships between Lewis formulas, electron domains, molecular geometry and type of hybridization. Predict the geometry around an atom from its hybridization, and vice versa. Inquiry 2—What experimental data demonstrate the physical properties of covalent substances? PSOW Investigate compounds based on their bond type 	
Structure 2.3—The metallic model	 Structure 2.3.1 Explain the electrical conductivity, thermal conductivity and malleability of metals. Structure 2.3.2 Explain trends in melting points of s and p block metals. 	Skills in the study of chemistry <u>Tools</u> • Tool 1: Experimental techniques • Tool 2: Technology • Tool 3: Mathematics Inquiry Process • Inquiry 1: Exploring and designing
	Additional higher level: Structure 2.3.3	 Inquiry 2: Collecting and processing data Inquiry 3: Concluding and evaluating

Explain the high melting point and	Formative Assessment (any of the
 Explain the high melting point and electrical conductivity of transition elements. Inquiry 2 What experimental data demonstrate the physical properties of metals, and trends in these properties, in the periodic table? Computer Simulations Computer simulation to show examples of metallic bonding. 	 following): Observation of practical skills and ability to follow steps and show working Questioning Discussion of the methodology of the calculations and what working is necessary: class, small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper questions Peer and self- assessment Students will be expected to check their own work at times,
	 Peer and self- assessment Students will be expected to check their own work at times, marking themselves and making corrections. At other times, they will share their answers and working and give and receive feedback from their peers Summative assessment Multiple choice questions
	 Free response/structure questions

Structure 2.4—From models to materials	Structure 2.4.1• Use bonding models to explain the properties of a material.Structure 2.4.2• Determine the position of a compound in the bonding triangle from electronegativity data.• Predict the properties of a compound based on its position in the bonding triangle.Structure 2.4.3• Explain the properties of alloys in terms of non-directional bondingStructure 2.4.4• Describe the common properties of plastics in terms of their structure.Structure 2.4.5• Represent the repeating unit of an addition polymer from given monomer structures.Additional higher level:Structure 2.4.6• Represent the repeating unit of polyamides and polyesters from given	 Skills in the study of chemistry <u>Tools</u> Tool 1: Experimental techniques Tool 2: Technology Tool 3: Mathematics Inquiry Process Inquiry 1: Exploring and designing Inquiry 2: Collecting and processing data Inquiry 3: Concluding and evaluating Formative Assessment (any of the following): Observation of practical skills and ability to follow steps and show working Questioning Discussion of the methodology of the calculations and what working is necessary: class, small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper
	Represent the repeating unit of	

Structure 3.1—The periodic table: Classification of elementsperiodic table. Structure 3.1.2• Tool 2: Technology • Tool 3: Mathematics• Deduce the electron configuration of an atom up to Z=36 from the element's position in the periodic table and vice versa.• Inquiry Process• Inquiry 1: Exploring and designing• Inquiry 2: Collecting and processing data• Explain the periodicity of atomic radius, ionic radius, ionization energy, electron affinity and electronegativity.• Inquiry 3: Concluding and evaluating• Inquiry 3: Concluding and evaluating• Inquiry of the			 marking themselves and making corrections. At other times, they will share their answers and working and give and receive feedback from their peers Summative assessment Multiple choice questions Free response/structure questions
of matterIdentify the positions of metals, metalloids and non-metals in the periodic table.Tool 1: Experimental techniques • Tool 2: Technology • Tool 3: MathematicsStructure 3.1.2Deduce the electron configuration of an atom up to Z=36 from the element's position in the periodic table and vice versa.• Tool 1: Experimental techniques • Tool 2: Technology • Tool 3: MathematicsStructure 3.1.3• Deduce the electron configuration of an atom up to Z=36 from the element's position in the periodic table and vice versa.• Inquiry Process • Inquiry 1: Exploring and designingInquiry 2: Collecting and processing data• Inquiry 3: Concluding and evaluatingFormative Assessment (any of the	UNIT	TOPIC/CONCEPT	ASSESSMENT COMPONENTS
Johowing).	of matter Structure 3.1—The periodic table:	 Identify the positions of metals, metalloids and non-metals in the periodic table. Structure 3.1.2 Deduce the electron configuration of an atom up to Z=36 from the element's position in the periodic table and vice versa. Structure 3.1.3 Explain the periodicity of atomic radius, ionic radius, ionization energy, electron 	 Tools Tool 1: Experimental techniques Tool 2: Technology Tool 3: Mathematics Inquiry Process Inquiry 1: Exploring and designing Inquiry 2: Collecting and processing data Inquiry 3: Concluding and evaluating

 Describe and explain the reactions of group 1 metals with water, and of group 17 elements with halide ions Structure 3.1.5 Deduce equations for the reactions with water of the oxides of group 1 and group 2 metals, carbon and sulfur. Structure 3.1.6 Deduce the oxidation states of an atom in an ion or a compound. Explain why the oxidation state of an element is zero. Additional higher level: Structure 3.1.7 Explain how these discontinuities provide evidence for the existence of energy sublevels. Structure 3.1.8 Recognize properties, including: variable oxidation state, high melting points, magnetic properties, catalytic properties, formation of coloured compounds and formation of coloured compounds and formation of coloured compounds and formation of the first-row transition elements Structure 3.1.10 Apply the colour wheel to deduce the wavelengths and frequencies of light absorbed and/or observed. 	 Students will be expected to check their own work at times, marking themselves and making corrections. At other times, they will share their answers and
---	--

	How can colorimetry or spectrophotometry be used to calculate the concentration of a solution of coloured ions? PSOW Investigate the colours of a range of complex ions of elements such as chromium, iron, cobalt, nickel and copper via spectrophotometry.	
Structure 3.2—Functional groups: Classification of organic compounds	 Structure 3.2.1 Identify different formulas and interconvert molecular, skeletal and structural formulas. Construct 3D models (real or virtual) of organic molecules. Structure 3.2.2 Identify the following functional groups by name and structure: halogeno, hydroxyl, carbonyl, carboxyl, alkoxy, amino, amido, ester, phenyl. Structure 3.2.3 Identify the following homologous series: alkanes, alkenes, alkynes, halogenoalkanes, alcohols, aldehydes, ketones, carboxylic acids, ethers, amines, amides and esters. Structure 3.2.4 Describe and explain the trend in melting and boiling points of members of a homologous series. 	 Skills in the study of chemistry <u>Tools</u> Tool 1: Experimental techniques Tool 2: Technology Tool 3: Mathematics <u>Inquiry Process</u> Inquiry 1: Exploring and designing Inquiry 2: Collecting and processing data Inquiry 3: Concluding and evaluating Formative Assessment (any of the following): Observation of practical skills and ability to follow steps and show working Questioning Discussion of the methodology of the calculations and what

 Apply IUPAC nomenclature to saturated or mono-unsaturated compounds that have up to six carbon atoms in the parent chain and contain one type of the following functional groups: halogeno, hydroxyl, carbonyl, and carboxyl. 	 working is necessary: class, small group, pair, individual, teacher-led, student-led. Think, pair, share Quiz Worksheets and past paper questions
 Structure 3.2.6 Recognize isomers, including branched, straight-chain, position and functional group isomers. Additional higher level: 	 Peer and self- assessment Students will be expected to check their own work at times, marking themselves and making corrections. At other times, they will share their answers and
Structure 3.2.7	working and give and receive
 Describe and explain the features that give rise to cis-trans isomerism; recognize it in non-cyclic alkenes and C3 and C4 cycloalkanes. Draw stereochemical formulas showing the tetrahedral arrangement around a chiral carbon. Describe and explain a chiral carbon 	feedback from their peers Summative assessment • Multiple choice questions • Free response/structure questions
 atom giving rise to stereoisomers with different optical properties. Recognize a pair of enantiomers as non-superimposable mirror images from 3D modelling (real or virtual). Structure 3.2.8 	

UNIT	structure of a molecule. TOPIC/CONCEPT	ASSESSMENT COMPONENTS
	 Deduce information about the structural features of a compound from specific MS fragmentation patterns. Structure 3.2.9 Interpret the functional group region of an IR spectrum, using a table of characteristic frequencies (wavenumber/cm⁻¹). Structure 3.2.10 Interpret ¹H NMR spectra to deduce the structures of organic molecules from the number of signals, the chemical shifts, and the relative areas under signals (integration traces). Structure 3.2.11 Interpret ¹H NMR spectra from splitting patterns showing singlet, doublets, triplets and quartets to deduce greater structural detail. Structure 3.2.12 Interpret a variety of data, including analytical spectra, to determine the 	

REACTIVITY ONE (1)	Reactivity 1.1.1	Skills in the study of chemistry
What drives chemical reactions?	Understand the difference between heat	<u>Tools</u>
	and temperature.	• Tool 1: Experimental techniques
Reactivity 1.1—Measuring enthalpy	Reactivity 1.1.2	Tool 2: Technology
changes	Understand the temperature change	• Tool 3: Mathematics
	(decrease or increase) that accompanies	
	endothermic and exothermic reactions,	Inquiry Process
	respectively.	 Inquiry 1: Exploring and
		designing
	Reactivity 1.1.3	 Inquiry 2: Collecting and
	• Sketch and interpret energy profiles for	processing data
	endothermic and exothermic reactions	• Inquiry 3: Concluding and
	Reactivity 1.1.4	evaluating
	• Apply the equations $Q = mc\Delta T$ and $\Delta H =$	Formative Assessment (any of the
	$-\frac{Q}{n}$ in the calculation of the enthalpy	following):
	change of a reaction.	Observation of practical skills
		and ability to follow steps and
	Inquiry 2	show working
	What observations would you expect to make	Questioning
	during an endothermic and an exothermic	_
	reactions?	Discussion of the methodology
		of the calculations and what
	Inquiry 1, 2, 3	working is necessary: class,
	How can the enthalpy change for combustion	small group, pair, individual,
	reactions, such as for alcohols or food, be	teacher-led, student-led.
	investigated experimentally?	• Think, pair, share
	5	Quiz
	Inquiry 3	Worksheets and past paper
	Why do calorimetry experiments typically	questions
	measure a smaller change in temperature than	Peer and self- assessment
	is expected from theoretical values?	

	PSOW Determine the enthalpy change of simple reactions in aqueous solutions Determine the enthalpy of melting ice	 Students will be expected to check their own work at times, marking themselves and making corrections. At other times, they will share their answers and working and give and receive
	Calculate the energy content of food	feedback from their peers Summative assessment Multiple choice questions Free response/structure
Reactivity 1.2—Energy cycles in reactions	 Reactivity 1.2.1 Calculate the enthalpy change of a reaction from given average bond enthalpy data. Reactivity 1.2.2 Apply Hess's law to calculate enthalpy changes in multistep reactions. Additional higher level: 	questions Skills in the study of chemistry <u>Tools</u> • Tool 1: Experimental techniques • Tool 2: Technology • Tool 3: Mathematics <u>Inquiry Process</u> • Inquiry 1: Exploring and designing • Inquiry 2: Collecting and
	Reactivity 1.2.3• Deduce equations and solutions to problems involving these terms.Reactivity 1.2.4Calculate enthalpy changes of a reaction using $\Delta H^{\ominus}f$ data or $\Delta H^{\ominus}c$ data: $\Delta H^{\ominus} = \Sigma (\Delta H_{\rm f}^{\ominus} \operatorname{products}) - \Sigma (\Delta H_{\rm f}^{\ominus} \operatorname{products})$ $\Delta H^{\ominus} = \Sigma (\Delta H_{\rm c}^{\ominus} \operatorname{reactants}) - \Sigma (\Delta H_{\rm c}^{\ominus} \operatorname{products})$	 Inquiry 2: concerning and processing data Inquiry 3: Concluding and evaluating Formative Assessment (any of the following): Observation of practical skills and ability to follow steps and show working

Reactivity 1.2.5	Questioning
 Interpret and determine values from a 	Discussion of the methodology
Born–Haber cycle for compounds	of the calculations and what
composed of univalent and divalent ions.	working is necessary: class,
	small group, pair, individual,
	teacher-led, student-led.
	• Think, pair, share
	• Quiz
	Worksheets and past paper
	questions
	Peer and self- assessment
	Students will be expected to
	check their own work at times,
	marking themselves and making
	corrections. At other times, they
	will share their answers and
	working and give and receive
	feedback from their peers
	Summative assessment
	Multiple choice questions
	Free response/structure
	questions

All Diploma Programme courses are designed as two-year learning experiences.